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FFF is known to have issues with part 
quality and consistency, which has lim-
ited its use to prototyping and noncritical 
applications where functional reliability 
does not affect safety.[2] The occurrence of 
issues such as poor surface finish, layer 
delamination, and poor dimensional sta-
bility depends on a number of parameter 
settings, including nozzle temperature, 
print speed, environmental conditions, 
geometry, and location (Figure  1a,b).[3] 
Experienced operators must set these 
parameters according to the material, part 
geometry, and 3D printer. It can be diffi-
cult for even an expert to select optimum 
parameter settings (Figure  1c,d).[4] An 
operator can specify settings for over 
100 different printing options using a 
slicing software such as Cura. Attempting 
all combinations is not practical, so an 
operator must rely on their knowledge 
of 3D printing to adjust parameter set-
tings. This leads to operator-dependent 
part-to-part variations and uncertainty 

in the performance of the final part. Additionally, an operator 
will typically select a set of global parameter settings that are 
used throughout the part, or at most make some layer-to-layer 
adjustments. A more objective solution for selecting parameter 
settings is needed to ensure optimal use of the printer/mate-
rial performance space and consistency in 3D-printed parts, 
regardless of part geometry, material, system, or operator.

Machine learning offers a potential approach to addressing 
this problem. Machine learning models are trained on thou-
sands to millions of data points to recognize patterns that 
are too difficult to identify using deterministic algorithms.[5] 
Machine learning has been successfully applied in applications 
such as image processing, text classification, and speech recog-
nition.[5–7] Potential uses for machine learning in 3D printing 
have also been studied in a limited capacity.[8] Examples of their 
use in both monitoring/feedback applications and predictive 
models include predicting property outcomes based on param-
eter settings, predicting global parameter settings for specific 
outcomes, identifying failures during printing, predicting bead 
geometry, adjusting geometry to prevent failures, and assessing 
part manufacturability.[9–27] An example of the utility of machine 
learning in the established quality control method of visual 
inspection is demonstrated by the use of a neural network to 
identify flaws in laser powder bed fusion 3D printing.[28,29] An 

Quality control and repeatability of 3D printing must be enhanced to fully 
unlock its utility beyond prototyping and noncritical applications. Machine 
learning is a potential solution to improving 3D printing performance and 
is explored for areas including flaw identification and property prediction. 
However, critical problems must be resolved before machine learning can 
truly enable 3D printing to reach its potential, including the very large data 
sets required for training and the inherently local nature of 3D printing where 
the optimum parameter settings vary throughout the part. This work out-
lines an end-to-end tool for integrating machine learning into the 3D printing 
process. The tool selects the ideal parameter settings at each location, taking 
into consideration factors such as geometry, hardware and material response 
times, and operator priorities. The tool demonstrates its usefulness by cor-
recting for visual flaws common in fused filament fabrication parts. An image 
recognition neural network classifies local flaws in parts to create training 
data. A gradient boosting classifier then predicts the local flaws in future parts, 
based on location, geometry, and parameter settings. The tool selects optimum 
parameter settings based on the aforementioned factors. The resulting prints 
show increased quality over prints that use global parameters only.
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Additive Manufacturing

1. Introduction

3D printing, also known as additive manufacturing, is a pro-
cess that constructs objects by depositing material, typically in a 
layer-by-layer fashion, to yield geometries not achievable by con-
ventional manufacturing techniques. This expanded geometric 
range allows for parts tailored for properties such as weight, 
stiffness, strength, or combinations thereof. This capability is 
of special interest to industries such as aerospace, where weight 
is a critical design factor. Fused filament fabrication (FFF), also 
known as fused deposition modeling (FDM), is a common type 
of 3D printing in these applications because of its scalability and 
ability to print a range of materials.[1] In FFF, a thermoplastic 
material is extruded from a hot nozzle in a predetermined pat-
tern to build a part from a semicontinuous bead of material. 
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image of the powder bed was captured after each layer, seg-
mented, and put through a machine learning model to iden-
tify flaws at specific locations. A visual representation of the 
part could then be constructed to show the location of flaws. 
In another study, a part was thermomechanically modeled 
using finite element analysis (FEA) to determine part warping 
during printing.[30] The geometry of the part was then adjusted 
using machine learning to mitigate warping. While the work 
cited above demonstrates the potential of machine learning 
in 3D printing, collecting and processing sufficient quantities 
of high-quality data remains a challenge. Studies using data 
from printed, physical parts typically have fewer than 100 data 
points in the entire data set, while machine learning requires 
tens of thousands of data points for models to be considered 
valid.[5,8] This is a practical constraint given the cost and tedium 
of printing enough samples to provide sufficient data sets for 
the identification and classification of printing flaws as well as 
for determining fixes. Additionally, the work cited focuses on 
aspects of 3D printing and does not address the full process.

The goal of this work is to develop the foundations for an 
end-to-end tool that can determine near optimum location 
specific parameter settings for a given local geometry, material, 

and machine without expert intervention. This, in effect, gives 
the machine qualities similar to those of a human craftsman 
by anticipating areas where flaws may occur and proactively 
adjusting parameter settings to maximize the chance of a flaw-
free part. We have picked a subset of the 3D printing parameter 
space in order to develop the key elements of the tool. We focus 
on systematic visual flaws that occur in repeated prints of the 
same geometry (Figure  1a,b) whose mitigation often requires 
an operator to adjust some parameter settings that may be 
contradictory (Figure 1c,d). We do not directly address random 
flaws, such as those resulting from defects in the print filament 
or a fault in the machine. These are best addressed with the 
addition of sensors and real-time feedback mechanisms. Sim-
plified data capture and processing in the tool open up a path to 
generate large test data sets for the learning.

We have devised a tool that selects 3D printing parameter 
settings based on local part geometry and visual flaws. Parts 
are segmented into discrete components and machine learning 
models are used to identify flaws in existing part segments. The 
segmentation process results in thousands of data points per 
print, increasing the size of the data set used for identifying 
print defects, even with a limited number of prints. A second 
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Figure 1.  Global parameter setting flaws. A,B) Systematic flaws recur in multiple prints of a part and C,D) cannot be readily fixed by a change in the 
“global” parameter settings without affecting another area of the print.
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set of machine learning models predicts flaws in future part 
segments based on parameter settings and geometry. From 
these predictions, the tool selects local parameter settings that 
give the highest probability of a flaw-free part. Throughout 
the process, printed optimized parts are used to retrain the 
models using semisupervised learning, which results in more 
accurate prints with each iteration. This paper discusses 
the development, training, and operation of the tool. Evidence 
of its functionality is demonstrated by predicting flaws in 
future prints, optimizing a print for minimal flaws, and 
simultaneously optimizing for minimal flaws and print time.

2. Results

2.1. Tool Overview

The tool uses localized data, obtained from an image recog-
nition algorithm that identifies and classifies flaws and part 
geometry, to train a model that predicts future flaws in a part. 
The flaw prediction results are then used to adjust and optimize 
parameter settings. Only visual flaws are considered because 
they are easy to identify and appear in unique locations, which 
helps demonstrate the effectiveness of localized optimization. 
The tool consists of three independent modules: the detection 
module, the prediction module, and the smoothing module 
(Figure  2a). Figure  2b shows a schematic diagram of the tool 
implemented in this work with the solid (black) lines indicating 
general use procedures, dotted (orange) lines for training pro-
cedures, and dashed (purple) lines for continued learning. The 
detection module provides data on the location and types of 

flaws in a part for training and testing. These data, combined 
with geometry, parameter settings, and toolpath data, train the 
prediction module. The prediction module outputs the prob-
ability of each flaw classification occurring at every local point 
for all possible parameter combinations. From these probabil-
ities, the smoothing module generates a new set of machine 
readable instructions, known as G-code, based on a set of “best” 
local parameter settings. These parameter settings are chosen 
to minimize the probability of flaws occurring while meeting 
hardware limitations and any added operator priorities. Locally 
optimized parts are printed, analyzed by the detection module, 
and fed back into the prediction module for continued learning.

Factors including the machine, part geometry, material, 
and range of parameter settings are set and held constant 
throughout the experiments to demonstrate the workflow 
through the tool. This restriction reduces the complexity and 
variability of the data in the development process but does not 
limit the demonstration of the essential elements of the work-
flow. The test part is built with acrylonitrile butadiene styrene 
(ABS) and consists of two perpendicular thin walls connected 
by a flat bottom (Figure 2c). This material and geometry combi-
nation was chosen for the frequency and type of flaws common 
in the part and ease of data collection. Digital photographs are 
used to capture data for the detection module. The flaw clas-
sifications used are: blobs, warps, delaminations, and “none” 
(Figure 3a). Blobs are the appearance of excess material on the 
surface of the print. Warps are areas of the print that are curved 
upward and appear in the sample images as layer lines with a 
slight curvature. Delaminations are defined as two layers that 
have debonded and separated over part of the interface. “None” 
are the absence of any of the aforementioned flaws. Both the 
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Figure 2.  Tool overview. A) Elements of the tool showing the three distinct modules. B) Data flow between the CAD model, G-code, and the print.  
C) The part geometry chosen to develop and demonstrate the functionality of the tool.
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detection module and prediction module are trained on flaws 
found on the outward facing sides of the walls. The five printing 
parameters and discrete setting ranges are as follows: nozzle 
temperature (225, 235, and 245 °C), bed temperature (90, 100, 
and 110 °C), print speed (20, 40, 60, and 80 mm s−1), extrusion 
multiplier (90, 100, and 110%), and fan speed (0, 30, 45, and 
80% of the maximum speed). These parameters and ranges, 
which are not intended to be exhaustive, are fundamental 
to the process, easy to program through G-code, and cover a 
range where the effects of changes are readily observable. 
There are 432 possible combinations of global parameter set-
tings of which 144 combinations were printed in random order 
and used to train the models in both modules. The random 
ordering ensures the training data sample the full parameter 
space while more data are gathered and enable exploration of 
the end-to-end functionality of the tool. Each part took between 
13 and 45 min to print.

2.2. Detection Module

The detection module provides flaw classification and location 
data, initially from parts printed with global parameter settings, 
to train and test the prediction module. In this work, we use 
transfer learning with AlexNet to create an image classification 
model. The two walls of the printed part are photographed, seg-
mented into smaller images showing 4 mm × 4 mm overlap-
ping sections, and manually labeled (Figure  3a).[6] AlexNet is 

trained on these images in a pseudo semisupervised learning 
process where each newly classified image is checked by a 
human, reclassified if necessary, and the model retrained. The 
model has an accuracy of 98.26% with a low rate of confusion 
between flaws (Figure  3b). The detection module classified 
flaws in parts not included in the training data to further 
demonstrate its capability. The graphical representation of the 
detection module output (Figure  3c) shows the probability of 
blobs detected in a part. Colored boxes in the images directly 
correlate flaws classified by the detection module with these 
regions in the part (Figure 3d,e).

2.3. Prediction Module

The prediction module calculates the probability of various types 
of flaws occurring at each location in the print based on param-
eter settings and geometry. We use a gradient boosting classifier 
in Scikit-learn to calculate the flaw probability.[31] The prediction 
module outputs a table of these probabilities or the most likely 
flaw classification (including “none”) at each segment. To cal-
culate the probabilities, local geometries (Figure  4a) harvested 
from the STL file, toolpath locations, and parameter settings are 
fed to the gradient boosting classifier. The trained model has 
an accuracy of 73.69%. The confusion matrix (Figure 4b) shows 
that the model performs well at predicting the delamination 
flaws with 89% accuracy but has a high rate of false positives for 
that category. There is some confusion between blob and warp 
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Figure 3.  Detection module. A) Sample images of the blob, warp, delamination (delm), and “none” flaw classifications used to train the detection 
module and develop the workflow through the tool. B) Confusion matrix showing validation accuracy of the detection module. C) Heat map showing 
the probability of blobs in the part identified by the detection module. D,E) Printed part with the flaws identified in (C) correlated with the true flaws.
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flaws, both of which commonly occur near the edge of the part. 
The rate of false positives in these two classifications is lower 
than that for delaminations. The model is conservative when 
predicting “none” flaws with a 24% false negative rate.

Several prints not in the training data were selected at 
random, run through the prediction module, printed, and ana-
lyzed using the detection module. The results are compared to 
the predictions to test the validity of the algorithm. Correlation 
between the predicted flaws and classified flaws is 95.2 and 
82.6% for the test cases shown, respectively (Figure 4c). Overall 
agreement between the prediction module and detection 
module models for all test cases is 79.83%.

2.4. Smoothing Module

The prediction module does not explicitly include material and 
hardware response limitations in arriving at the “best” param-
eter settings. These limitations must be addressed more directly 
to yield printable G-code. The material and hardware response 
to parameter setting changes will dictate the minimum step 
size and the time scale for these changes in the final G-code.

The mechanical responses of the 3D printing hardware and 
material limit the range of parameter setting changes achiev-
able. For example, nozzle temperature response time is a 
hardware limited characteristic. Under worst case conditions 
(highest print speed, fan speed, and extrusion multiplier), the 
nozzle temperature increases at a rate of around 14 °C min−1. 
The cooling rate is a much faster 60 °C min−1, but the controller 

overshoots and takes nearly a minute to settle after reaching the 
target temperature (Figure S1a, Supporting Information).

The material response to changes in extrusion multiplier and 
print speed is another limiting characteristic. Figure 5a–c shows 
two parts printed with the print speed and extrusion multi-
plier randomly selected at each segment. Changing print speed 
results in a part with a rough, wavy texture corresponding to the 
changes. In contrast, very little effect is seen when the extrusion 
multiplier alone is adjusted (Figure 5b). Blobs are present in the 
print (Figure  5c) corresponding to a simultaneous decrease in 
the print speed and extrusion multiplier (Figure 5d,e).

The smoothing module is used to produce a coherent 
set of parameter settings to account for the above and other 
limitations. Various methods can be used to do this, including 
algorithms that account for the known material and hardware 
responses. In this work, a simple walk of the “best” parameter 
settings is implemented to demonstrate the functionality of the 
module (Figure  5f). Using a table containing the probability 
of various flaws generated by the prediction module, the 
smoothing module charts a path between adjacent segments 
that aims to maintain the highest probability of “none” flaws 
while minimizing the segment-to-segment change in the 
parameter settings.

2.5. Optimizing for Quality

The tool selects parameter settings to minimize visual flaws. 
From here on we will define minimizing the visual flaws as 
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Figure 4.  Prediction module. A) The prediction module processes local geometry and parameter data to predict flaw classifications B) with a confi-
dence shown in the confusion matrix. C) The agreement between the prediction module and the detection module classifications of the flaws in the 
printed parts.
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increasing the quality of the part. This is done by selecting the 
parameter setting combinations with the highest probability of 
“none” flaws. Blindly following this procedure over the entire part 
results in G-code that cannot be printed in practice (Figure S1b,  
Supporting Information), so modifications are performed. 
First, global parameter settings are chosen for nozzle and bed 
temperature, since hardware response for these two parameters 
is slow. “Best” parameter settings selection is performed for the 
remaining three parameters. Then, parameter setting changes 
over consecutive points are smoothed based on the machine’s 
capability.

Graphical representations of the G-code for print speed, 
extrusion multiplier, and fan speed settings for the quality opti-
mized part are shown in Figure  6a–c. The bottom layers and 
corners show how the module adjusts settings across the three 
parameters to increase the quality of the part. The print speed 
is slowed to the lowest setting (20 mm s−1) in the corners in the 
bottom layers. Fan speed is increased and extrusion multiplier 
is decreased for the corners. The part took 24 min and 13 s to 
print. The resulting part quality (Figure 6d) is 86.41%, which is 
in the top 0.5% of all parts classified by the detection module.

2.6. Optimizing for Print Time and Quality

In addition to optimizing purely for print quality, it is often 
customary for expert operators to also optimize for factors such 
as print speed at the expense of one of the quality metrics. 

Similarly, the tool can account for operator priorities, such as 
print time, in addition to material and hardware limitations 
when building G-code. For example, parameter settings can 
be optimized to yield the lowest print time while maintaining 
overall part shape and integrity (i.e., no warps and delamina-
tions). The tool achieves this objective by incrementing the 
print speed to the limit where there are no warps and delamina-
tions at the expense of residual blobs.

Graphical representations of the G-code for print speed, 
extrusion multiplier, and fan speed settings are shown in 
Figure  7a–c. Once again, the tool selects a lower print speed 
on the first few layers. Print speed and extrusion multiplier are 
reduced around the corners and fan speed is increased. Fan 
speed is reduced in the lower sections of the part and increases 
as it approaches the top. The extrusion multiplier shows a sim-
ilar trend. The part (Figure 7d) took 16 min and 56 s to com-
plete and displays no flaws in most of the part, although more 
pronounced blobs are observed around the corner. The part is 
76.61% “none” flaw as classified by the detection module.

2.7. Overall Results

The tool, using locally optimized parameter settings, printed 
high-quality parts when compared to parts printed with global 
parameters settings without the need for operator intervention, 
demonstrating its functionality and versatility. Comparisons 
of detection module classified quality and print time for the 
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Figure 5.  Smoothing module. A–C) Artifacts in the print due to the limitations of the hardware and the material response. D,E) Parameter setting 
changes for print speed and extrusion multiplier prior to smoothing. F) Smoothing of the parameter settings changes by the smoothing module.
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quality optimized part, print time and quality optimized part, 
and training (global settings) parts show how the tool performs 
against global parameter setting combinations (Figure 8). The 
quality optimized print is 14% higher “none” flaw than the 
average part with global settings and 40 mm s−1 print speed. 
The print time and quality optimized part quality (76.61%) is 

similar to the average quality of the 40 mm s−1 setting combina-
tions (76.04%) but has a print time that is 28% faster. Compared 
with one another the quality optimized part has a 13% higher 
quality, while the print time and quality optimized part prints 
30% faster. Overall, the tool sacrifices quality for speed, or vice 
versa, depending on the operator’s priorities.

Adv. Mater. Technol. 2019, 4, 1800653

Figure 6.  Quality optimized part. Smoothed changes in the A) print speed, B) extrusion multiplier, and C) fan speed for a D) quality optimized part.

Figure 7.  Print time and quality optimized part. Smoothed changes in the A) print speed, B) extrusion multiplier, and C) fan speed for a D) print time 
and quality optimized part.



www.advancedsciencenews.com

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800653  (8 of 10)

www.advmattechnol.de

Adv. Mater. Technol. 2019, 4, 1800653

3. Discussion

3.1. Local Parameter Setting Trends

We observe three types of parameter setting responses/trends 
output by the tool: operator-like behavior, complex behavior, 
and emergent behaviors. Operator-like behaviors include those 
parameter setting changes that are common practice in 3D 
printing and can be easily programmed by the operator. Nozzle 
temperature changes are evidence of this behavior (Figure S1b, 
Supporting Information). The nozzle temperature is set to the 
highest setting (245 °C), particularly around the corners, in the 
first few layers at the bottom of the print. A higher nozzle tem-
perature closer to the bottom of the print is a technique that 
increases the adhesion between the first layers of the part and 
the print bed. This has the effect of reducing warping at the 
bottom of the part by preventing the first layers from detaching. 
Another example of this behavior is found in the print speeds 
selected for the first few layers of both the quality and print 
time and quality optimized parts (Figures 6a and 7a). Speed is 
lowered, which has the effect of reducing warping in the first 
few layers of the part. Both of these are operator selectable 
options in the Cura slicing software.

Complex behavior refers to parameter setting changes for 
which the reasoning is understandable but not easily imple-
mented using basic slicing software. This type of behavior is 
evident around sharp corners of the part. The tool chooses a 
lower print speed in these areas for both the quality and print 

time and quality optimized parts. This is an understandable 
reaction of the tool as reducing print speed allows for increased 
adhesion between layers, which prevents delaminations. Simul-
taneously, a decreased print speed and decreased substrate 
temperature result in fewer blobs. Fan power increases as 
well, which also helps to cool the substrate and further prevent 
blobs. Currently, the only way for a human operator to adjust 
parameter settings at specified points such as these is to manu-
ally write the changes into G-code.

Emergent behaviors occur when the correlation between 
parameter setting changes and printing results is not a priori 
predictable. One such emergent behavior is that of fan speed 
and extrusion multiplier. These two parameters are coupled in 
both of the optimizations but do not display the same relation-
ship. The fan speed and extrusion multiplier are inversely pro-
portional in the quality optimized part and directly proportional 
in the print time and quality optimized part. Additionally, fan 
speed and extrusion multiplier increase at higher layers in the 
print time and quality optimized part, while no such change is 
observed in the quality optimized part. Although theories could 
be offered, they would be largely speculative. We can, however, 
conclude that the tool does not use a single type of parameter 
setting adjustment for a specific flaw.

Analysis of the parameters selected reveals that the tool is 
capable of solving complex problems. The combination of 
behaviors outlined above shows that the tool not only makes 
changes to the parameter settings that are consistent with 
known techniques but also implements solutions beyond the 
capability of a human operator.

3.2. Hardware Response

The mechanical and thermal response of the printer and mate-
rial is an important factor to consider when designing the 
tool. Simply changing parameter settings at each segment will 
not result in flaw-free locations as predicted by the prediction 
module because of inherent limitations due to response times. 
The 3D printer used is unmodified and, therefore, has a fixed 
nozzle mass, heater, and control system that is not designed to 
execute sudden changes in temperature. Poor print quality with 
sudden changes in print speed and extrusion multiplier is likely 
due to the compressible nature of molten ABS. It is possible 
that the combination of the machine limitations and physics of 
the material’s response to print conditions also play a role.

The algorithm implemented in the smoothing module is 
crucial to achieving quality parts since the prediction module 
was not trained for flaws induced by the mechanical response. 
Even the simple walk of the “best” parameter settings tech-
nique used for these experiments greatly improved the quality 
of the part over what could have resulted without smoothing. 
Further work on implementing more sophisticated smoothing 
algorithms will likely lead to further improvements in print 
quality. Training the predictive model to account for printing 
conditions preceding a segment of interest would provide addi-
tional smoothing and increase quality, as mechanical response 
would be represented in the predictions sent to the smoothing 
module. This would reduce the occurrence of blobs seen in the 
print time and quality optimized part as those are likely due 

Figure 8.  Overall performance of the tool in optimizing for print quality 
and optimizing for print time and quality compared against prints using 
global parameter settings.
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to factors that are not accounted for in the current prediction 
module. Additionally, incorporating data from computational 
modeling of the printing process would complement learning 
from the printed results.

Hardware improvements are also important to reduce the 
response time of the printer and compliment the smoothing 
algorithm. Changes to the control system of the machine, for 
example, have been shown to reduce flaws frequently encoun-
tered at high speeds.[32] Despite the major effects of hardware and 
material limitations, the tool is still able to produce quality parts 
and demonstrate the utility of machine learning in 3D printing.

3.3. Continued Learning

The advantage of using machine learning to optimize 3D 
printing is that it continues to improve as it encounters new 
situations and reinforces old ones. More data are necessary 
to improve the accuracy and generalizability of the machine 
learning models used in the tool now that its effectiveness 
has been demonstrated. Examples of additional training data 
include more varied geometries, inputs from more and dif-
ferent sensors, and optimizing for additional print parameters. 
The predictive model trained in this work only saw one type of 
geometry, so the weights are closely tied to location coordinates. 
A more generalizable training geometry would allow the tool 
to shift focus to geometric features and increase the likelihood 
of a correct response when the tool encounters parts it has not 
seen before but contain similar features. Additional sensors 
could augment the detection module to ensure that the flaws 
inferred are real. For example, the detection module had issues 
correctly classifying warps that occurred at the bottom of the 
part, often misclassifying them as delaminations. A sensor that 
can detect when the bottom layers of the part detach from the 
print bed could be used to improve the reliability of the detec-
tion module in identifying warps. It is also known that factors 
including substrate temperature can affect how and when the 
flaws form in the part. Having this type of data available would 
be useful in improving the accuracy of the predictive model.

This work focuses on using the tool to optimize for visible 
print flaws, but other metrics, such as road width and dimen-
sional stability, could also be addressed assuming the effects 
can be measured locally. Correlations between local flaws and 
overall part performance, such as mechanical properties, can be 
deduced with further characterization and the data made avail-
able for training. While modifying the tool to optimize for other 
metrics would require adaptation for new sensors, data, and out-
puts, the high-level structure of the tool would remain intact.

The flexibility of the tool is the result of each module being 
independent of each other. This allows each to be modified, 
tailored, and improved upon so the tool can be easily modified 
to handle different scenarios. Only the input and output varia-
bles need to be compatible, as each module feeds the next. Also, 
using separate modules to detect flaws and optimize parameter 
settings means that the output of the tool is not constrained 
to what the detection module is trained to identify or the  
prediction module to predict. The quality and print time and 
quality optimizations demonstrate this directly. The smoothing 
module was adjusted to produce unique responses for different 

scenarios with the other two modules left unchanged. This 
modular design removes constraints on geometry, parameters, 
targeted output, machine, 3D printing technique, or manufac-
turing process in general.

4. Experimental Section
Printing: All printing was performed on an unmodified Lulzbot Taz Mini 

3D Printer (Aleph Objects, Loveland, CO) with a 0.5 mm nozzle using 
3 mm diameter natural ABS filament (Village Plastics, Barberton, OH)  
in an ambient environment. Slicing and toolpath planning was performed 
using Cura version 3.2.21 and formed the base G-code. G-code for all 
remaining parameter combinations were produced by modifying the 
base G-code using a Python script. The initial parameter settings and 
ranges were chosen based on the default settings and physical limits of 
the filament and printer. Layer height was set at 0.25 mm for all prints. 
Infill was not required due to the thickness of the walls.

Data Collection: Data were collected by photographing the two 
outside walls of the printed part using a Nikon D3200 DSLR camera 
with an 85 mm macro lens against a black backdrop. The images were 
used as input to a MATLAB script that segmented them into smaller 
4 mm × 4 mm subsections of the part overlapping every 2 mm. Part 
geometry data were collected by first using Autodesk NetFabb to refine 
the STL mesh size in the part to a maximum edge length of 0.1 mm 
and analyzed using libigl[33] to extract geometric information from each 
vertex. The G-code was segmented into roughly 2 mm linear sections 
for alignment with the geometric data. Finally, the coordinates of the 
G-code and geometry data were aligned and the data mapped to their 
respective points. Data for the images, geometry, and G-code were 
brought together and stored using the Python Pandas DataFrame.

Model Training and Validation: AlexNet in MATLAB r2018a was used 
for the detection module. The complete data set for the detection 
module contained over 170  000 image segments in total, however, 
around 95% of these images were “none” flaws. Therefore, the training 
data were reduced to 459 images per flaw classification (1836 total 
images). The limiting factor for the detection module model was 
delaminations. The model was trained on the data set using a Quadro 
K4000 GPU with parallelization for a total training time of ≈1 h and can 
classify all 676 image segments of each wall in 35 s.

A gradient boosting classifier in Scikit-learn (Python 3.6.5) was used 
for the prediction module. The training data set for the prediction module 
consists of 49 164 data points evenly spread over the flaw classifications. 
Downsampling was employed to prevent overfitting caused by the 
high number of “none” flaws and low number of other flaws including 
delamination. Data points from a single print appeared in either the 
training data or test data only. After training, the model took around 3 s 
to predict the 3.24 × 106 local parameter setting combinations for a part. 
All validation experiments were performed using the same equipment 
and environment as the training data set.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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