
Austin Ebel
abe2122@columbia.edu

Full Custom 8-Bit
Microprocessor 2021-05-16

1 Overview
This report will serve as a brief, relatively informal summary of the work done to design an 8-bit microprocessor as
part of Professor Ken Shepard’s Digital VLSI Circuits class at Columbia University. It is written after-the-fact for the
purposes of my website, therefore there may be some slight errors and inconsistencies as I try to summarize what’s been
done around a year ago.

More concretely, this project involved the design and layout of a fully custom 8-bit microprocessor core using Cadence
Virtuoso and IBM’s 90nm technology. A crude overview of the design can be seen in Figure 1.

Figure 1: Datapath of the core

The design supports addition, subtraction, bit shifting, and storage/retrieval from SRAM through the opcodes and control
signals shown in Figure 2. Additionally, we have clk and clk distributed throughout the core.

Figure 2: Opcodes and control signals

2 Components
Every component in this microprocessor core was designed from scratch except for the SRAM cell (although we still
had to properly tile it & set up the read and write logic). Wires and vias were all placed by hand, and every transistor
was sized for near optimal performance assuming a 2-1 resistivity ratio between PFETs and NFETs. We first designed
and simulated each component within Cadence’s Analog Design Environment (ADE) to verify functionality, and then
moved to layout afterwards. Again, each transistor was placed by hand, and every component was passed to Calibre for

1



layout verification using DRC and LVS. Finally, we extracted parasitics and simulated the critical path delay for each
component.

The following subsections will briefly go into the design decisions, simulations, and layout for each major component in
the microprocessor core.

2.1 Addition/Subtraction
First, we designed an 8-bit two’s complement ripple carry adder. To slightly reduce the delay of the critical path (carry
propagation) we leveraged the inversion property,

S(a, b, ci) = S(a, b, ci)

co(a, b, ci) = co(a, b, ci)

to get rid of inverters in the carry logic. Also, we designed each 1-bit adder to ensure ci was as close to co as possible.
Finally, we used a 6-transistor XOR gate to detect overflows. A high level schematic of our adder can be seen in Figure 3.

Figure 3: 8-bit adder

For each component, we began by drawing stick diagrams to visualize transistor placement. The adder was our first major
design & layout, so there was an incredible learning curve to Cadence during the week this was due. Figure 4 shows
one bit of our adder layout on the left, and the critical path delay (full carry propagation) of our entire 8-bit adder after
extracting parasitics on the right. I believe we sized transistors in our adder to be relatively large because we assumed the
input capacitance of our load would be large as well.

Figure 4: Single bit layout & 8-bit critical path simulation

2



2.2 Shifter
Next, we implemented an 8-bit logical left shifter. This was relatively straightforward and just involved three stages of
multiplexers. We encoded the shift amount as a 3-bit value which served as the select line for each stage. By doing this,
we could logically left shift any input value by 7 bits.

Figure 5 shows the layout of one of these multiplexers (left), and the schematic for the entire 8-bit shifter (right). Again,
I believe we sized these to be relatively large due to the large load we’d be driving, but neglected to size each stage
independently. A similar extraction and critical path simulation was done, resulting in Figure 6.

Figure 5: Multiplexer layout (left) and shifter schematic (right)

Figure 6: Shifter delay w/ parasitics

2.3 SRAM
The following week, we designed our 8-byte SRAM. As I mentioned previously, we were given a single standard SRAM
cell, but had to properly tile it and design the read/write logic. Quick aside - I’m sure we spent well over 50 hours on this
during the week it was due.

We first had to design a 3-to-8 decoder to convert the binary address to the appropriate wordline. Then, we tiled the
SRAM cell to create an 8x8 grid and connected bit and bit lines accordingly. AND gates were added to the read logic for
clock qualification, and a similar process was done to write data. Finally, we added a sense amplifier to ensure proper
logic levels, and a tri-state buffer at the output to drive a load.

3



After verifying read & write functionality in Spectre, we began the layout process. Since the SRAM cells themselves
were very small, significant effort went into making the read/write logic small and tileable as well. Our final schematic
and layout can be seen in Figure 7. The critical path delay to read from our SRAM (including parasitics) can seen in
Figure 8.

Figure 7: SRAM schematic (left) and layout (right)

Figure 8: SRAM critical path read delay

This layout was significantly smaller than our adder and shifter. In fact, it was so much smaller that we neglected to
follow our previously assumed bit pitch, and attempted to keep with the SRAM size in future layouts.

2.4 PLA
In the final week, we added a PLA to decode instructions into control signals for our datapath. Figure 9 shows our truth
table for this process. We used espresso for logic minimization, and converted the output to a sum-of-products form for
the AND/OR planes of our PLA. Our schematic and layout can be seen in Figure 10. I believe our design was functionally
correct, however I may have slightly over-complicated some of the logic when designing it.

4



Figure 9: Control logic truth table

Figure 10: PLA schematic (left) and layout (right)

2.5 Other Components
In addition to the PLA, we designed an 8-bit level-sensitive latch, a 3-1 multiplexer (for 3, 8-bit signals), an 8-bit bus
driver, and assembled the entire design. This was another incredibly stressful week to say the least. Layouts of all three
of these can be seen in Figure 11.

Figure 11: Latch (top left), bus driver (bottom left), 3-1 multiplexer (right)

5



• Latches were added before and after combinational logic blocks (separated latch design).
• The 3-1 multiplexer was used to select only one output from the shifter, adder, and memory.
• The bus driver was used as an interface between internal and external buses.

3 Final Design
We then pieced together all of the components mentioned above to form our final design and layout. There were no
shortage of last minute DRC and LVS errors, but ultimately everything checked out. Finally, based on our previous delay
simulations, we were able to estimate the delay of our critical path/maximum achievable clock rate to be ∼ 10 ns. From
this, we could also estimate the dynamic power consumption to be on the order of 10−5 W. The final schematic and
layout can be seen in Figure 12.

Figure 12: Final schematic (left) and layout (right)

4 Conclusions
One quick look at Figure 12, and you might be able to see that we significantly overestimated the bit pitch of our design
for the adder and shifter (bottom region of the final layout). This was primarily because:

• These were our first two designs & layouts, so there was an immense learning curve to Cadence (especially given
the time frame).

• Without a good understanding of what each future component would look like, we wanted to air on the cautious
side and make the design slightly larger.

• We believed the capacitance of the adder’s load would be larger than it was, so we sized components much larger
than necessary.

The tiled SRAM array was the first true point of comparison, and the layouts following it were much more compact.

As I’ve hinted at, this was an incredibly time-consuming and nerve-wracking project. While we spent an inordinate
amount of time on this in the last month of the class (roughly 40 hours/week), I would’ve loved to have dedicated a bit
more time for further performance optimizations (and fixing past mistakes). That said, I did have to balance three other
senior/grad-level classes. In the future, I’d definitely like to tackle something a bit higher level as well. Perhaps designing
a processor in Verilog to get a feel for the FPGA or ASIC design flow. Ideally, something similar to this,

• https://github.com/EECS150/fpga_project_skeleton_fa20/blob/master/spec/project_spec.pdf

6

https://github.com/EECS150/fpga_project_skeleton_fa20/blob/master/spec/project_spec.pdf

	Overview
	Components
	Addition/Subtraction
	Shifter
	SRAM
	PLA
	Other Components

	Final Design
	Conclusions

