
Parallelization of Particle Swarm Optimization

E4750 Fall 2019 Report
Austin Ebel, abe2122
Columbia University

Abstract— Particle Swarm Optimization (PSO) is a technique
most often associated with cost function minimization, how-
ever it has seen limited use in practical applications as its
performance suffers severely on CPUs in higher dimensional
search spaces. This is because resources and runtimes scale
quadratically with increasing complexity. This project aims to
reduce the runtime complexity of this algorithm by making
use of parallel computing techniques on GPUs. Optimal use
of shared memory, block size, and data transfer techniques
can result in significant performance improvements, but are
often difficult to find because they are extremely application
specific. This project uses an iterative approach to finding
optimal combinations, in hopes of increasing the viability of
Particle Swarm Optimization in modern applications.

I. OVERVIEW

A. Problem in a Nutshell

More formally, PSO is a population-based global search
algorithm wherein one initializes many agents (particles) that
move around a given search space with some position and
velocity in an attempt to find the extrema of functions. The
magnitude and direction of velocity depends on the particle’s
own constraints, but also global information about the group
of particles. This typically results in a swarming-like effect
toward a function’s minimum or maximum over many itera-
tions. It is closely associated with the more popular technique
of gradient descent [1], however differs primarily in that is
much more computationally intensive and computes optimal
directionality without using gradients.

While PSO, much like gradient descent, is inherently
a sequential process - converging to extrema over many
iterations - each particle is largely independent from one
another within each iteration (and where most of the compu-
tational complexity occurs). Because of this, PSO is a prime
candidate for parallelization.

Optimal use of shared memory, correct block size, and
memory coalescing play a pivotal role in increasing appli-
cation performance on GPUs. [2] and [3] show the extent
of such optimizations. Due to the iterative nature of PSO,
significant amounts of data are transmitted between the CPU
and GPU during runtime. In general, memory coalescing and
data reuse in shared memory play large roles in these types of
iterative applications to prevent additional DRAM bursts and
reduce global memory accesses. As the interplay between
shared memory usage and block size is largely application
specific, a brute force method was applied to find optimal
parameters.

B. Prior Work

The formalization of PSO is attributed James Kennedy
and Russell Eberhart in 1995 [4] as an approach to simulate
the flocking of birds and schooling of fish. It was simplified
after the fact as its application to optimization was realized.
Following this formalization, an attempt to parallelize PSO
came in 2004 with Schutte, J. et. al [5], who used a multi-
core CPU to show significant performance improvement of
the algorithm given load-balanced cost function evaluation.
In 2009, Zhou, Y. et al [6] presented novel work implement-
ing PSO on NVIDIA GPUs, showing up to an 11x increase in
performance over traditional CPUs for a given cost function.
Due to the continual increase of computational power in
GPUs, PSO has seen use in the fields of image processing
and medicine in [7] and [8] respectively.

II. DESCRIPTION

Section 2.1 summarizes the objectives and technical chal-
lenges faced during this project. Section 2B gives a detailed
formulation of PSO with associated block diagrams and flow
charts for clarity, Section 2C details a pseudocode imple-
mentation of parallelization, and a step by step discussion of
software design.

A. Objectives and Technical Challenges

The overarching goal of achieving a performance increase
on GPUs can be broken down into 3 primary components:
finding an optimal block size(s), finding optimal tile size(s)
for shared memory allocation, and minimizing the move-
ment of data between the GPU and CPU. While reducing
data transfers will almost universally increase performance,
finding optimal block and tile sizes is considerably less
straightforward. In applications that have little to no data
reuse inside a kernel, using shared memory is a wasted
resource given that no new reads from global memory are
required. Furthermore, the time required to copy data from
global memory to shared memory can significantly harm
performance. Thus, an ideal combination must be found in
order to ensure optimal performance.

B. Problem Formulation and Design

At the heart of Particle Swarm Optimization is an iterative
update of the particle’s velocity and position within each
timestep. These are given in Eq. 1 and Eq 2.

vik+1 = ωkv
i
k + c1r1(p

i
k − xi

k) + c2r2(p
g
k − xi

k) (1)



xi
k+1 = xi

k + vik+1 (2)

where:
• c1, c2, and ω are hyper-parameters that define the

relative strength of each component of the velocity
calculation

• r1, r2 are uniform random variables U{0, 1}
• xi

k represents particle i’s position at the kth timestep
• pik represents particle i’s best visited position at the kth

timestep
• vik represents particle i’s velocity at the kth timestep
• pgk represents the global best position among all particles

i = 1, ..., n on the kth timestep

For a given cost function in IRn, the velocity calculation
above is done using a vector in IRn−1.

It can be seen that Eq. 1 has three components in the
velocity calculation. Respectively, these have been named
the inertia, the personal factor, and the societal factor.
The personal component tends to pull the particle’s velocity
toward it’s personal best location visited. Similarly, the
societal factor pulls every particle toward the best known
position of the group.

A full pseudo-code implementation of the PSO can be
seen in Figure 1, and a similar flow chart can be seen in
Figure 2.

Fig. 1. Pseudocode Implementation of PSO

Fig. 2. PSO Implementation Flowchart

Additionally, the ability to parallelize PSO can be seen in
Figure 1. It begins by initializing the position of each particle
randomly, according to U{a, b}, where a and b can be chosen
by the user as upper and lower bounds to the search space,

however it is also common to start every particle at the same
position. Serial algorithms require that each particle’s initial
position be calculated sequentially, however GPUs offer the
ability to perform all initializations in parallel.

The most impactful parallelization comes from within
each iteration (as seen by the second outline in Figure 1), and
can be broken down into three sub-parallelization problems:
the velocity calculation, the updating of the particle’s best
known position, and the update of the global best position.
These three problems are discussed at length in the following
section.

C. Software Design

In the broadest sense, a parallel PSO implementation can
be seen in Figure 3, where f(x) represents the three core
parallelizable elements within each iteration. The following
three sections will present a more in depth look at each of
these elements.

Fig. 3. PSO Block Diagram

1) Velocity Calculation:

The updated position and velocity calculations involve
moving several arrays to the GPU. Following the notation of
Eq. 1, these arrays have values xk, pk, and vk. Data is stored
in 2D arrays of size (# of particles,# of dimensions −
1). For example, solving a 10-dimensional x2 minimization
with 30 particles will result in arrays of size (30, 9). The
parallelization of this velocity calculation follows the block
diagram in Figure 4, and a more detailed pseudocode imple-
mentation can be seen in Figure 5.

Within this calculation, shared memory techniques were
investigated in an attempt to improve efficiency by reducing
the number of reads from global memory. PSO suffers from
very little data reuse (only utilizing the current position twice
per iteration as seen in Eq. 1), thus, as seen in the Results
section, it benefits from little to no shared memory usage.

If the allocated thread falls within these input arrays, each
particle and vector component of each particle computes
updated positions and velocities in parallel.

2) Individual Evaluation:

Following Figures 1 and 2, after computing the updated
positions and velocities, one must then evaluate every par-
ticle’s new position, modifying pik if the evaluation leads
to less error than in the previous iteration. Figure 6 details



Fig. 4. Velocity Calculation Block Diagram

Fig. 5. Velocity Calculation Pseudocode

pseudocode for this parallelizable element of PSO, and
Figure 7 shows a block diagram of this element.

Of note, this aspect cannot be fully parallelized due to
inherent race conditions that arise if multiple threads attempt
to update a common value. This pseudocode implementation
bypasses this with a for loop, however CUDA’s atomicAdd
operation can be used in practice to remove this race condi-
tion.

Fig. 6. Evaluation Calculation Pseudocode

3) Group Evaluation:

The final parallelizable element comes when updating the
group’s best position, pgk, at the kth iteration. If, within the
previous individual evaluation, a cost is observed that is less
than the group’s best known cost, it must be broadcasted
to the entire group of particles and updated. Again, race

Fig. 7. Evaluation Calculation Block Diagram

conditions may apply if multiple particles see smaller costs
than the previous group’s best cost. A reduction algorithm to
find the minumim value in an array can be used to circumvent
this race condition. Pseudocode for this reduction algorithm
can be seen in Figure 8.

Fig. 8. Group Comparison Pseudocode

III. RESULTS

All code was run on the device in Table I using the Py-
CUDA [9] framework. This section will begin by presenting
an overall view of PSO error minimization regardless of
implementation decision. It will then show a baseline test
of serial versus parallel performance. Following, tweaks to
block size and shared memory are explored.

TABLE I
DEVICE SPECIFICATIONS

Device Specifications
Name GeForce GTX TITAN X
Compute Capability 5.2
Multiprocessors 24
CUDA Cores 4608
Concurrent threads 49152
GPU Clock 1076 MHz
Memory Clock 3505 MHz
Total Memory 4016 MiB
Free Memory 3991 MiB



Fig. 9. PSO Accuracy

A. Error Minimization

Figure 9 shows the accuracy of PSO while varying the
number of particles and iterations in a minimization of
f(x) = x2 in a 9-dimensional search space. As can be
seen, PSO performs poorly both for low iteration counts
and low particle numbers. A single particle acts similarly
to Brownian motion, and can easily get trapped in local
extrema as shown in Figure 9. As particle numbers increase,
accuracy increases significantly, however levels quickly after
three particles. This can be attributed to the relatively simple
cost function modeled in this simulation. In practice, cost
functions will be much more complex, likely resulting in a
wider disparity in performance as particle counts increase.

B. Baseline Serial versus Parallel Implementations

Figure 10 shows a comparison of serial versus parallel
runtimes of PSO as a function of the complexity of the
problem within a single iteration. As search spaces become
more complex, the number of particles required to obtain
worthwhile solutions increase, the number of dimensions
increase, and the overall number of iterations required in-
creases. This results in the quadratic scaling of computational
resources as complexity increases. Traditional serial algo-
rithms must sequentially compute updated velocities, best
individual positions, and best group positions with respective
runtimes of O(n2), O(n2), and O(n). The parallel algorithm,
conversely, takes O(1), O(logn), and ∼ O(n) respectively.

Thus the parallel implementation avoids this quadratic
scaling of runtime within each iteration. Runtimes in Figure
10 include delays of copying data between the GPU and
CPU, thus for particle numbers less than ten, the serial
algorithm is more efficient. However, for practical applica-
tions, it’s safe to assume the number of particles will be
significantly past the 10-particle inflection point shown in
Figure 10.

Fig. 10. Serial vs. Parallel Performance

IV. PERFORMANCE VERSUS BLOCK SIZE

Figure 11 details the effect of block size on performance
for an increasing number of particles and dimensions within
the code in Figure 6. Interestingly enough, no patterns
emerge outside of an initial decrease in runtime as the
number of particles and dimensions increase above one. This
is likely due to the under-utilization of resources in the kernel
at low particle counts. Thus, at least up to 100 particles
and dimensions in a relatively simple cost function, block
size seems to be independent of performance. Optimal block
sizes may emerge for more complicated functions in higher
dimensions, however the runtime limitations of the GPU in
use prevented this exploration.

Fig. 11. Effect of Block Size on Performance

A. Performance versus Tile Size

Figure 12 details the effect of changing tile size in
shared memory on performance for an increasing number of
particles within the code detailed in Figure 5. It is apparent



that for a higher number of particles, runtime performance
suffers when larger tile sizes are used. This can be attributed
to the fact that PSO has very little data reuse within each
velocity calculation. Eq. 1 shows this fact, as xi

k will be the
only element used multiple times in the calculation. Thus, it
is not worthwhile to spend the time copying data from global
to shared memory in this case. As tile size increases, so do
shared memory sizes within each block. For large tile sizes,
it becomes more costly for the thread to access each element
in shared memory than for smaller tile sizes.

Fig. 12. Effect of Tile Size in Shared Memory on Performance

V. DISCUSSION AND FURTHER WORK

As shown in the Results section, the parallelization of
Particle Swarm Optimization does yield a significant per-
formance increase over the serial version. This performance
increase seems on par with previous literature on the subject.

Performance measures do not incorporate every data
copy from host to device, thus, in practice, one might need
a larger number of particles before the parallel algorithm
becomes more efficient. In the future, performing as many
computations on the GPU is crucial in order to remove
the significant performance cost of moving data between
devices. Random numbers were generated on the CPU and
then copied to the GPU. Moving such generation to the GPU
would significantly reduce runtimes. Additionally, CUDA
supports an atomicMin() operation, however it presently only
works with integers. If at some point NVIDIA incorporates
floating point support, this could be a much simpler approach
to finding minimum array values as efficiently as possible.

To further decrease runtimes, a pure CUDA implemen-
tation could be used instead of PyCUDA. Moreover, several
aspects of the problem were left in serial, including finding
the index of the optimal array value in the calculation of
the group’s best position. Finding a more optimal approach
to this problem will again significantly reduce runtime in
practice.

VI. CONCLUSION

This project aimed to parallelize aspects of Particle
Swarm Optimization (PSO), in an attempt to increase the
viability of this algorithm in modern applications. By using
a GPU instead of traditional CPUs, four aspects of PSO
have been improved, reducing the runtime complexity from
quadratic to linear with increasing particle numbers and
dimensions. This project set out to understand how varying
block size, utitlizing shared memory, and memory coalescing
impact performance. Figures 11 and 12 detail this investiga-
tion, and show the negative impact of shared memory when
data reuse is minimal. Further improvement can be made
both by reducing the number of data transfers between the
CPU and GPU, and by modifying the reduction kernel to
obtain both the minimum value and index associated with
that value.



VII. ACKNOWLEDGEMENTS

I would like to thank Professor Zoran Kostic for his time
and effort throughout the class this semester. In addition, I’d
like to thank Abhyuday Puri, the course TA, for his insights
into several key aspects of this problem.

REFERENCES

[1] An Introduction to Neural Networks. 1995. Gradient Descent Algo-
rithms. doi:10.7551/mitpress/3905.003.0011.

[2] Putt Sakdhnagool and Amit Sabne and Rudolf Eigenmann (2019).
RegDem: Increasing GPU Performance via Shared Memory Register
Spilling CoRR, abs/1907.02894.

[3] Sze, V., Chen, Y.H., Yang, T.J., & Emer, J. (2017). Efficient processing
of deep neural networks: A tutorial and survey Proceedings of the
IEEE.

[4] Eberhart, Russell, and James Kennedy. ”Particle swarm optimization.”
Proceedings of the IEEE international conference on neural networks.
Vol. 4. 1995.

[5] Schutte, J. F., Reinbolt, J. A., Fregly, B. J., Haftka, R. T., & George,
A. D. (2004). Parallel global optimization with the particle swarm
algorithm. International journal for numerical methods in engineering,
61(13), 2296-2315.

[6] Zhou, Y., & Tan, Y. (2009, May). GPU-based parallel particle swarm
optimization. In 2009 IEEE Congress on Evolutionary Computation
(pp. 1493-1500). IEEE.

[7] Gao, Jianwei et al. Multi-GPU Based Parallel Design of the Ant
Colony Optimization Algorithm for Endmember Extraction from Hy-
perspectral Images. Sensors (Basel, Switzerland) vol. 19,3 598. 31 Jan.
2019, doi:10.3390/s19030598

[8] Congsheng Li, Chang Liu, Lei Yang, Luyang He, and Tongn-
ing Wu, Particle Swarm Optimization for Positioning the Coil
of Transcranial Magnetic Stimulation, BioMed Research Inter-
national, vol. 2019, Article ID 9461018, 12 pages, 2019.
https://doi.org/10.1155/2019/9461018.

[9] Klckner, Andreas, et al. ”PyCUDA: GPU run-time code generation
for high-performance computing.” Arxiv preprint arXiv 911 (2009).

VIII. INDIVIDUAL STUDENT CONTRIBUTIONS

This project was completed individually, thus all contri-
butions came from Austin Ebel, with the supplementary help
of Professor Zoran Kostic and Abhyuday Puri.


